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1 Introduction

• Computer Vision - detection of 3d properties (geometric, material) from 2d images (inverse problem)

– Geometric Properties - size, shape, location
– Material Properties - radiance, color, texture, material composition

• Computer Vision is not image processing or pattern recognition

– Pattern Recognition - classifies patterns into a finite number of categories (e.g., is there a person
in the picture?)

– Image processing - producing new image from an old one (often a precursor to computer vision)

• Ways of Approaching Computer Vision: high vs low level, biological vs synthetic

– Biological - tends to be more complicated/low level

• Block Diagram view

– Controller - gets something to work (thing in actual world) how we want it to work (model)
– Estimator - figures out how something (model) works by observing its behavior (actual world)
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2 Image Formation and Sensing

Steps for image formation and sensing

2.1 Image Formation

2.1.1 Models of Projection
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• Center of Projection - location of pinhole
• Pinhole problems - does not let in enough light, diffraction (reason for using lenses)
• If f � z (e.g., microscope), then r1 = fx

f+z ≈ x (use viewpoint-centered)

• If f � ∆z (e.g., a wall), then r1 = fx
z+∆z ≈

fx
z = mx where m = f

z

2.1.2 Lenses

Perfect Alignment

z′ z

1
z′ + 1

z = 1
f

Misalignment

z′
s′

δ d

δ = d
∣∣∣1−f/s1−f/z − 1

∣∣∣
To derive the latter equation, define the following:

• z′ - actual distance of lens to image plane
• s′ - ideal distance of lens to image plane
• z - actual distance to the object
• s - ideal distance to the object
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Then by similar triangles, s′δ = d(z′ − s′). Then

δ =
d(z′ − s′)

s′

=
d|z′ − s′|

s′
(whether s′ is too far or too close does not not matter)

= d

∣∣∣∣z′s′ − 1

∣∣∣∣
= d

∣∣∣∣ fz/(z − f)

fs′/(s− f)
− 1

∣∣∣∣ (From lens equation:
1

z′
+

1

z
=

1

f
⇒ z′ =

fz

z − f
and s′ =

sz

s− f
)

= d

∣∣∣∣ z(s− f)

s′(z − f)
− 1

∣∣∣∣
= d

∣∣∣∣ zs(s− f/s)zs(1− f/z)
− 1

∣∣∣∣
= d

∣∣∣∣1− f/s1− f/z
− 1

∣∣∣∣
Other interesting (related) points:

• Aperture - a smaller d means less blurring but also less light coming in.
• Depth of Field - range of distances over which objects are focused sufficiently well (e.g., s ∈ [zmin, zmax])
• Resolution - higher resolution means lower depth of field (less tolerance for δ)

2.2 Image Sensing

2.2.1 Field of View

h/2

f

α/2

Viewpoint Centered View

α = 2 arctan
(

h
2f

)
= Field of View

2.2.2 Quantization

Relevant terms1:

• R1 - discrete horizontal position (i.e., the pixel #)
• r1 - continuous horizontal position (i.e., a measurement with a ruler)
• dr1 - width of a pixel
• W - total image plane width (in pixels)

1substitute superscript “2” for vertical coordinates
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dr1

dr2

W

H

R1 = −3

r1 = −2.5

R1 = br1/dr1c+ W
2 (W even)

R1 = br1/dr1c+ W−1
2 (W odd)

2.2.3 Transformations

Terminology

1. TW
BC =


x
y
z
1

 - translation from points B to C in the W (world) reference frame2

2. RW
C =

 | | |
x̂W ŷW ẑW
| | |

 - rotation from reference frame W to C (note: RTR = I, |R| = 1). To create

RC
W - plot W and C coordinate frames on top of each other. x̂c is the location of the world’s x-axis3

from the perspective of the C frame (see applications below).

3. gWC =

(
RW

C TW
WC

0 1

)
- transformation matrix from homogeneous coordinate in reference frame C to

same point in W 4

4. qWA - point A in reference frame W

2i.e., qWB = TW
AB + qA

3(x,y,z)

4i.e., qWA =

(
pWA
1

)
= gACqCA
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Transformation Summary[2]

Name Equation Preserves. . . Notes

Translation

(
I t
0T 1

)
angles, lengths, parallel

Rotation

(
R 0T

0 1

)
angles, lengths, parallel x, y, z orthonormal

Scaling

(
αI 0T

0 1

)
angles, parallel

Shear

1 a 0
b 1 0
0 0 1

 parallel

Affine

(
A 0
0T 1

)
parallel A combines rotation, shear, scale

Projective

(
A t
v 1

)
straight lines combines all of the above

3D to 2D Projection [2]: Comparing Orthographic, Para-Perspective, and Perspective Projection

• Orthographic5 - removes the z component. Good approximation when f � z or f � ∆z.xy
1

 =

1 0 0 0
0 1 0 0
0 0 0 1



x
y
z
1


• Para-Perspective - projects on line along line of sight to object center then scalesxy

1

 =

a11 a12 a13 a13

a13 a13 a13 a13

0 0 0 1



x
y
z
1


Applications

• Finding RC
W : Write the coordinates of the world unit x-axis in terms of camera coordinates (same for

y, and z). Then

RC
W =

 | | |
x̂W ŷW ẑW
| | |


Here is a simple example for finding RC

W . Given the below picture, we want

(
1
0

)
W

⇒
(

1/
√

2

−1/
√

2

)
C

and

(
0
1

)
W

⇒
(

1/
√

2

1/
√

2

)
C

x̂W

ŷW

x̂CŷC

RC
W =

 1/
√

2 1/
√

2 0

‘− 1/
√

2 1/
√

2 0
‘0 0 1‘



5x and y may also be scaled
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• Transform point from perspective of camera to perspective of world

ŷW

ẑW

x̂W

ŷCẑC

x̂C

A

TW
WC

TW
CA

qWA = RW
C qCA + TW

WC = TW
CA + TW

WC

• Turning affine operations into linear ones with homogeneous coordinates

qWA =

 pW

1

 =

 RW
C

0
0
0

0 0 0 1


 pC

1

+

 TW
WC

0



=

 RW
C

0
0
0

0 0 0 1


 pC

1

+

 0 TW
WC

0 0 0 1


 pC

1



=

 RW
C TW

WC

0 0 0 1


 pC

1

 = gWC qCA

• Finding
(
gWC
)−1

:6

Inverting the formula from Bullet #1: qCA = (RW
C )−1qWA − (RW

C )−1TW
WC

Direct use of formula from Bullet #1: qCA = RC
W qWA + TC

CW

Combining these two gives: RC
W = (RW

C )−1 and TC
CW = −(RW

C )−1TW
CW

Using this result as well as the conclusion from bullet #3 gives a new form for (gWC )−1:

qCA = gCW qWA =

 RW
C TW

WC

0 0 0 1

 qWA =

 (RC
W )−1 −(RW

C )−1TW
CW

0 0 0 1

 qWA = (gWC )−1qWA

2.3 Going from world coordinates to camera pixels: Ψ

2.3.1 Deriving the basic form of Ψ

3 steps

1. Image Sensing (qw → qc): Get points in camera frame (i.e., qc = gcwq
w)

qc =

(
pc

1

)
= gcwq

w =

(
R T
0 1

)
qw

6remember that because R is orthonormal, RT = R−1

6



2. Projection (qc → r where r is continuous): Apply perspective projection equations
(i.e., r = (fxc/zc, fyc/zc)T )7

r =

r1

r2

1

 =

fxc/zcfyc/zc

1

 ∼
fxcfyc

zc

 =

f 0 0
0 f 0
0 0 1

xcyc
zc

 =

f 0 0 0
0 f 0 0
0 0 1 0

 qc

Now combine this information with that from step 1

r =

f 0 0 0
0 f 0 0
0 0 1 0

( R T
0 1

)
qw =

f 0 0
0 f 0
0 0 1

( R T
)
qw = Ψ1

(
R T

)
qw

2 other forms: Ψ1

(
R|T

)
qw =

(
Ψ1R

C
W |Ψ1T

C
W

)
qw =

(
Ψ(Rw

c )T | −Ψ(Rw
c )TTw

c

)
qw

3. Quantize Signal - translate,8 scale, skew to correct camera abnormalities (e.g., center of focus is not in
center of camera, etc). Then round in order to place into buckets

Scaling:

α 0 0
0 α 0
0 0 1

 Translation:

1 0 t1
0 1 t2
0 0 1

 Skew:

1 δ 0
0 1 0
0 0 1



When we multiply these equations together, we get a matrix that does all three operations:

α δ t1
0 α t2
0 0 1

.

Multiplying this matrix by what we found in the previous step gives the final Ψ9:α δ t1
0 α t2
0 0 1

Ψ1

(
R T

)
qw =

α δ t1
0 α t2
0 0 1

f 0 0
0 f 0
0 0 1

( R T
)
qw

=

αf1 δ t1
0 αf2 t2
0 0 1

( R T
)
qw = Ψ

(
R T

)
qw

Note: The rounding step (e.g., floor, ceil) is a non-linear function not captured by Ψ.

2.3.2 Special Topic: Linearizing a Matrix

Suppose you have a stereo camera at t = t1 taking a picture of some object. You then rotate the object and
want to know how how to transform points on the object at t1 to the same points at t2. Note that the object
is rigid so the transformation matrix will be the same for all points. Only from observing points, what is
the transformation from t1 to t2?

7note that (xc, yc, zc)T = qc.
8to make the middle the origin of the xy axis, t1 and t2 are often set to W/2 and H/2 respectively. Note that because of

projection, translation is just for x and y. There is no z.
9note that when the buckets on the camera image sensor are not equal, we get different f1 and f2
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(rotate −90o)

R L

12

3

Consider some point qi
10 for which we have its position at both t1 and t2. Then:


xi(t2)
yi(t2)
zi(t2)

1

 = qi(t2) = gqi(t1) =

(
R T
0 1

)
xi(t1)
yi(t1)
zi(t1)

1

 =


R11xi(t1) +R12yi(t1) +R13zi(t1) + T1

R21xi(t1) +R22yi(t1) +R23zi(t1) + T2

R31xi(t1) +R32yi(t1) +R33zi(t1) + T3

1


Note that we can write each component in q(t2) as follows (the first component is shown, but the 2nd

and 3rd components can be made by moving the 0T around:

xi(t2) =
(
xi(t1) yi(t1) zi(t1) 1

)
R11

R12

R13

T1

 =
(
xi(t1) yi(t1) zi(t1) 1 0T

1x4 0T
1x4

)

R11

R12

R13

T1

0T
4x1

0T
4x1


Thus, we can write the original equation as follows:

qi(t2) =


xi(t2)
yi(t2)
zi(t2)
1

 =

x1(t1) y1(t1) z1(t1) 1 0T
1x4 0T

1x4

0T
1x4 x1(t1) y1(t1) z1(t1) 1 0T

1x4

0T
1x4 0T

1x4 x1(t1) y1(t1) z1(t1) 1





R11

R12

R13

T1

R21

R22

R23

T2

R31

R32

R33

T3



There is only one problem—there are three equations and 12 unknowns. Fortunately, there is a simple
solution. Because the object is rigid, every point in the object shares the same transformation matrix g.
Thus, rather than using just one point in the above equation, we can augment it with extra points.11Thus,
we are left with the familiar b = Ax form and can solve for x, where x represents a linearized transformation
matrix g. The final step resizes the linearized matrix to the original square version.

10There are only 3 points shown in the picture but there could obviously be many more.
11Note that in this case there is no projection so there is no information lost (i.e., the z-information is still intact). Thus, we

only need to use 4 points. However, when projection is involved (see below), we will need 6 points because we will only have x
and y information.

8



2.3.3 Camera Calibration: Solving for Ψ

Camera calibration involves identifying camera parameters by taking a picture of a scene where intrinsic
calibration solves for Ψ and extrinsic calibration solves for (R|T ). In section 2.3.2, a system of the form
qC = (R|T )qW was solved for (R|T ) by linearizing the matrix (R|T ). Now multiply both sides by Ψ to get
the following:

r = ΨqC = Ψ(R|T )qW

Although Ψ was derived in section 2.3.1, people often refer to it in other ways (for reasons listed below):

r = Ψ
(
R T

)
qw = Dqw =

(
ΨR ΨT

)
qw =

(
M ν

)
qw

• Reason for D - In the worst case, Ψ
(
R T

)
has 17 unknowns (5 for Ψ, 9 for R, 3 for T ), but using

the D form, this comes down to only 12 unknowns. To solve for D (see section 2.3.2), arrange ri = Dqwi
into one of the following forms:

0 = ri ×Q(qi)d 0 = r̂iQ(qi)d

where

â =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (1)

and Q(qi) is a matrix after the linearizing process of section 2.3.2. From here, you can solve for D in
one of two ways:

– Singular Value Decomposition - given some m× n matrix A, the svd factors A so that

A = UΣV T

where U and V T are orthonormal.12 Then

AV = UΣ

or looking at just a column at a time gives:

Avi = σiui

Assuming the problem has a solution, it amounts to finding some vi in the null space of A.
Fortunately, since we have provided enough points, it is solvable and there should be some σk ≈
0.13 Then

Avk = 0

Remember that A stands for r̂iQ(qi) and vk is the d we are looking for. Putting all this more
colloquially, d = vk will always be the right-most vector of V so just run the following code: [U

S V] = svd(Q); V(:,end);. Then reshape the vector to a 3x4. Remember at this point though
that Ψ

(
R T

)
and Ψ may or may not have a bottom right element of 1. In case it is not 1,

divide D by 3
√

det(D).

– Pseudo-Inverse: d = pinv(A) or d = R \ Q in MATLAB14 and do the rescaling in the above
bullet.

The downside of using the D matrix is that it needs to be recalibrated every time you move the camera.

12orthonormal implies U−1 = UT

13The svd will order the singular values from highest (top left) to lowest (bottom right). Also, k = min(m,n).
14This method is quite sensitive to floating point arithmetic so it does not work in practice particularly well.
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2.4 Stereo

2.4.1 Epipolar Lines

Suppose you have a stereo rig as shown below:

q

zL
zR

TL
LR

L

R

Consider some point projected onto camera L and note that there are an infinite number of points in the
world that could have projected to this point. This is zL in the picture. Similarly, find the same point in
camera R and let zR be the ray representing the set of points that could have projected to this point. Also,

assume you know gLR =

(
RL

R TL
R

0 1

)
. Note also the following geometric relations:

q

v1

v3

v2

Because three points determine a plane, we can write

0 = (v3 × v2) · v1

and referencing equation (1), we can rewrite this as:

0 = (v̂3v2) · v1

= v1 · v̂3v2 (dot product is commutative)

= vT1 v̂3v2 (definition of dot product)

When we compare the two figures in this section, we see an obvious correspondence between zL, TL
LR,15 zR

and v1, v2, v3. There is only one slight change we need to make—we need to rotate zR into zL coordinate
frame to create zR. Thus, we are left with:

0 = (zL)T (T̂L
LRR

L
R)zR = (zL)TEzr (2)

We can now find the set of points zR that are in the null space of zLE.

15T̂ =

 0 −T 3 T 2

T 3 0 −T 1

−T 2 T 1 0

 will be used below
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2.4.2 Essential vs. Fundamental Matrix

The Essential matrix was derived in the previous section. To see how the Fundamental Matrix arises, note
that rL = ΨzL so that zL = Ψ−1rL. Then (zL)T = (rL)T Ψ−T .16 A similar process yields zR = Ψ−1rr. We
can plug these results into equation (2) to find F :

0 = (rL)T Ψ−T (T̂L
LRR

L
R)Ψ−1rR = (rL)TFrR

This will be a line in the right camera’s image. Rather than searching the whole image, we can search
for the corresponding point on the line.

To see why this is the case, let wT = (rL)TF . Then

0 = wT rR = w1rR1 + w2rR2 + w3

and note that it has the familiar form of a line: ax+ by + c = 0.
Before contrasting the two matrices, it is helpful to summarize their forms. 17

Matrix Formula Image Plane Ray Relationship

Essential (E) T̂R (rL)T Ψ−TEΨ−1rR = 0 (zL)TEzR = 0

Fundamental (F ) Ψ−T T̂RΨ−1 (rL)TFrR = 0

The difference between the two matrices can be analyzed across four areas: # of parameters, what it
maps, solving for the matrix, and using the matrix:

• # Parameters

– E - 5 parameters (3 for rotation, 2 for translation18)
– F - 7 parameters (2 + 2 for epipoles, 3 for homography)

• Solving for the matrix: suppose you have two images taken from stereo cameras of the same object so
that there are some corresponding points in both image planes. To solve for F and E, start with their
basic formulas and linearize using the method shown in section 2.3.2:19

0 = (rLi )TFrRi ⇒ 0 = A(rLi r
R
i )(
−→
f )

0 = (rLi )T Ψ−TEΨ−1rRi ⇒ 0 = A(rLi r
R
i )(
−−−−−−→
ψ−T eψ−1)

– E - requires solving for both extrinsic (R, T) and intrinsic parameters (Ψ)
– F - requires solving for only extrinsic (R, T) parameters

• Using the matrix: after reviewing the above table, you will note the following:20

– E - requires knowing only extrinsic parameters
– F - requires knowing both intrinsic and extrinsic parameters

• What it maps - the essential (fundamental) matrix maps rays to rays (points to points) as shown in
the below figure

16note that A−T ≡ (AT )−1

17It turns out that E = −RT T̂ although the sign generally does not matter because it is in an equation set equal to 0 (equation

(2). To see this, take the transpose of equation (2) so that 0 = 0T = (rR)T (RT T̂T rL where T̂ =

 0 −T 3 T 2

T 3 0 −T 1

−T 2 T 1 0

 = −T̂T

(see equation (1)).
18Magnitude does not matter.
19The notation

−→
f means “the linearized version of F”

20Note: if you want to map rL to rR, you will always need Ψ. This bullet is mostly just saying the formulas of E and F are
different.

11



q

rL
rR

TL
LR

L

R

E F

Left Camera Right Camera

2.5 Areas where epipolar lines fail

• Epipolar line in one camera does not cross the image plane of the other camera

• Ray from known camera passes through the other camera’s optical center

L R

• The point on the epipolar line is outside the field of view

References

[1] P. Vela, “ECE 4580 class lectures,” Spring 2013, (Georgia Institute of Technology).

[2] R. Szeliski, Feature detection and matching. Springer, 2009.

12


	Introduction
	Image Formation and Sensing
	Image Formation
	Models of Projection
	Lenses

	Image Sensing
	Field of View
	Quantization
	Transformations

	Going from world coordinates to camera pixels: 
	Deriving the basic form of 
	Special Topic: Linearizing a Matrix
	Camera Calibration: Solving for 

	Stereo
	Epipolar Lines
	Essential vs. Fundamental Matrix

	Areas where epipolar lines fail


